Update entrypoint.py
This commit is contained in:
parent
f4ae4ef668
commit
5fa1f21aab
|
|
@ -1,47 +1,47 @@
|
||||||
import os
|
import os
|
||||||
import langchain
|
from fastapi import FastAPI
|
||||||
import langchain_community
|
from langchain_community.utilities import SearxSearchWrapper
|
||||||
from langchain_community.agents import tool
|
from langchain_community.vectorstores import Qdrant
|
||||||
from langchain_community.tools import searxng, qdrant, llma_server
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||||
|
from langchain_community.llms import LLaMAServer
|
||||||
|
from langchain.schema import Document
|
||||||
|
|
||||||
# Environment variables
|
# Environment variables
|
||||||
SEARXNG_URL = os.environ['SEARXNG_URL']
|
SEARXNG_URL = os.environ["SEARXNG_URL"]
|
||||||
QDRANT_URL = os.environ['QDRANT_URL']
|
QDRANT_URL = os.environ["QDRANT_URL"]
|
||||||
LLAMA_SERVER_URL = os.environ['LLAMA_SERVER_URL']
|
LLAMA_SERVER_URL = os.environ["LLAMA_SERVER_URL"]
|
||||||
|
|
||||||
# Define the LangChain agent
|
# Initialize FastAPI
|
||||||
class SearchAgent(langchain.Agent):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.searxng_tool = searxng.SearXNGTool(SEARXNG_URL=SEARXNG_URL)
|
|
||||||
self.qdrant_tool = qdrant.QDrantTool(QDRANT_URL=QDRANT_URL)
|
|
||||||
self.llma_server_tool = llma_server.LLaMAServerTool(LLAMA_SERVER_URL=LLAMA_SERVER_URL)
|
|
||||||
|
|
||||||
async def search(self, query):
|
|
||||||
# Send query to SearXNG API
|
|
||||||
results = await self.searxng_tool.search(query)
|
|
||||||
# Embed results with QDrant
|
|
||||||
await self.qdrant_tool.embed(results)
|
|
||||||
return results
|
|
||||||
|
|
||||||
async def query(self, query):
|
|
||||||
# Use LLaMA-Server to process query
|
|
||||||
response = await self.llma_server_tool.query(query)
|
|
||||||
return response
|
|
||||||
|
|
||||||
# Create the LangChain agent
|
|
||||||
agent = SearchAgent()
|
|
||||||
|
|
||||||
# Define the API endpoints
|
|
||||||
from fastapi import FastAPI
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
@app.post("/search")
|
# Initialize components
|
||||||
async def search(query: str):
|
searx = SearxSearchWrapper(searx_host=SEARXNG_URL)
|
||||||
results = await agent.search(query)
|
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
||||||
return results
|
qdrant = Qdrant(
|
||||||
|
url=QDRANT_URL,
|
||||||
|
collection_name="search_vectors",
|
||||||
|
embeddings=embedding_model
|
||||||
|
)
|
||||||
|
llm = LLaMAServer(endpoint_url=LLAMA_SERVER_URL)
|
||||||
|
|
||||||
@app.post("/query")
|
@app.post("/process")
|
||||||
async def query(query: str):
|
async def process(query: str):
|
||||||
response = await agent.query(query)
|
# Step 1: Search with SearXNG
|
||||||
return response
|
raw_results = searx.run(query)
|
||||||
|
|
||||||
|
# Step 2: Convert to LangChain Documents
|
||||||
|
docs = [Document(page_content=result) for result in raw_results.split("\n") if result.strip()]
|
||||||
|
|
||||||
|
# Step 3: Embed and store in Qdrant
|
||||||
|
qdrant.add_documents(docs)
|
||||||
|
|
||||||
|
# Step 4: Query Qdrant for similar vectors
|
||||||
|
matches = qdrant.similarity_search(query, k=3)
|
||||||
|
|
||||||
|
# Step 5: Combine raw + vector results
|
||||||
|
combined = "\n".join([doc.page_content for doc in docs + matches])
|
||||||
|
|
||||||
|
# Step 6: Send to LLaMA-Server
|
||||||
|
response = llm.invoke(combined)
|
||||||
|
|
||||||
|
return {"response": response}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue