first commit
This commit is contained in:
commit
666680babb
|
|
@ -0,0 +1,10 @@
|
||||||
|
FROM langchain/langchain:latest
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
CMD ["uvicorn", "entrypoint:app", "--host", "0.0.0.0", "--port", "8000"]
|
||||||
|
|
||||||
|
|
@ -0,0 +1,5 @@
|
||||||
|
{
|
||||||
|
"schemaVersion": 2,
|
||||||
|
"dockerfilePath": "./Dockerfile"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
@ -0,0 +1,85 @@
|
||||||
|
# main.py
|
||||||
|
from qdrant_client.http import models as qmodels
|
||||||
|
import uuid
|
||||||
|
from fastapi import FastAPI
|
||||||
|
import requests, os, redis
|
||||||
|
from qdrant_client import QdrantClient
|
||||||
|
from langchain_community.vectorstores import Qdrant
|
||||||
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
# Connectors
|
||||||
|
qdrant = QdrantClient(url=os.getenv("QDRANT_URL"))
|
||||||
|
r = redis.Redis.from_url(os.getenv("REDIS_URL"))
|
||||||
|
SEARXNG_URL = os.getenv("SEARXNG_URL")
|
||||||
|
LLAMA_SERVER_URL = os.getenv("LLAMA_SERVER_URL")
|
||||||
|
QDRANT_URL = os.getenv("QDRANT_URL")
|
||||||
|
REDIS_URL = os.getenv("REDIS_URL")
|
||||||
|
|
||||||
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
||||||
|
|
||||||
|
@app.get("/ask")
|
||||||
|
def ask(query: str):
|
||||||
|
# 1. Search via SearxNG
|
||||||
|
resp = requests.get(f"{SEARXNG_URL}/search", params={"q": query, "format": "json"})
|
||||||
|
snippets = [r["title"] + " " + r["content"] for r in resp.json()["results"][:3]]
|
||||||
|
|
||||||
|
context = " ".join(snippets)
|
||||||
|
|
||||||
|
# 2. Embed + store in Qdrant
|
||||||
|
vectors = embeddings.embed_documents(snippets)
|
||||||
|
points = [
|
||||||
|
qmodels.PointStruct(
|
||||||
|
id=str(uuid.uuid4()), # unique ID for each snippet
|
||||||
|
vector=vec, # the embedding vector
|
||||||
|
payload={"text": text} # optional metadata
|
||||||
|
)
|
||||||
|
for text, vec in zip(snippets, vectors)
|
||||||
|
]
|
||||||
|
qdrant.upsert(collection_name="docs", points=points)
|
||||||
|
|
||||||
|
# 3. Call llama-server
|
||||||
|
llama_http = requests.post(
|
||||||
|
f"{LLAMA_SERVER_URL}/completion",
|
||||||
|
json={
|
||||||
|
"prompt": f"Context:\n{context}\n\nQuestion: {query}\nAnswer:",
|
||||||
|
"n_predict": 128,
|
||||||
|
"temperature": 0.7,
|
||||||
|
"stop": ["</s>"]
|
||||||
|
}
|
||||||
|
)
|
||||||
|
llm_resp = llama_http.json()
|
||||||
|
print("Llama raw response:", llm_resp)
|
||||||
|
|
||||||
|
return {"answer": llm_resp.get("content", "")}
|
||||||
|
@app.get("/health")
|
||||||
|
def health():
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
# Check Redis
|
||||||
|
try:
|
||||||
|
r = redis.Redis.from_url(REDIS_URL)
|
||||||
|
r.ping()
|
||||||
|
results["redis"] = "ok"
|
||||||
|
except Exception as e:
|
||||||
|
results["redis"] = f"error: {e}"
|
||||||
|
|
||||||
|
# Check Qdrant
|
||||||
|
try:
|
||||||
|
q = requests.get(f"{QDRANT_URL}/readyz")
|
||||||
|
results["qdrant"] = f"ok ({q.status_code})"
|
||||||
|
except Exception as e:
|
||||||
|
results["qdrant"] = f"error: {e}"
|
||||||
|
|
||||||
|
# Check SearxNG
|
||||||
|
try:
|
||||||
|
s = requests.get(f"{SEARXNG_URL}/search",
|
||||||
|
params={"q": "ping", "format": "json"},
|
||||||
|
headers={"X-Forwarded-For": "127.0.0.1"})
|
||||||
|
results["searxng"] = f"ok ({s.status_code})"
|
||||||
|
except Exception as e:
|
||||||
|
results["searxng"] = f"error: {e}"
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
fastapi
|
||||||
|
uvicorn
|
||||||
|
qdrant-client
|
||||||
|
redis
|
||||||
|
requests
|
||||||
|
sentence-transformers
|
||||||
|
langchain-community
|
||||||
|
|
||||||
Loading…
Reference in New Issue